
International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682 
Vol.5, No.3, march 2016                                                                           DOI:10.15693/ijaist.2016.v5.i3.29-38   
 

29 
 

Directory Based Cache Coherence Modellar in Multiprocessor using 
Scalable Cache Coherence(SCI) 

ManojJadhav 

SCOPE, VIT University,Vellore 

 

G. Gopichand 

SCOPE, VIT University, Vellore 

 

ABSTRACT 

In computational system such as multiprocessors and 

uniprocessor need to avoid the cache coherence because cache 

coherence arise the problem when there is a data inconsistency 

among main memory and private cache. The problem of cache 

coherence is solved by implementing the cache coherence protocol 

such as snoopy based or directory based protocol. The cache 

coherence protocol affects the performance of distributed shared 

memory multiprocessor system.  In general snoopy based protocol 

is used for small networks and directory based protocol is used for 

large scale distributed network. In this paper we have proposed 

the coherence model based upon cache based principle that is 

IEEE standards for Scalable coherent Interface (SCI). SCI 

supports the shared and distributed memory with cache coherence 

for tightly coupled system and message passing for loosely coupled 

system. It also supports efficient multiprocessor lock transactions, 

which is used for read and write operation of cache memory. 

Keywords: Cache coherence protocol, SCI, Distributed shared 

memory. 

1. INTRODUCTION 

Cache memories are introduced into computers in order to 

bring data closer to the processor and hence to reduce the 

memory latency. In multiprocessor machines where many 

processors required a copy of same memory block to be cached 

in their local cache, the maintenance of consistency among 

these copies raises the problem of cache coherence. In general 

there are three causes sharing of writable data, Process 

migration, I/O activity. To handle the problem of cache 

coherency following techniques can be used  

 Hardware based protocols 

 Software based schemes 

 

1.1 Hardware based protocols: 

This protocol provides general solution to the problem of cache 

coherence. Hardware based protocols can be classified 

according to three major consideration as follows 

a. Memory Update Policy: When the processor finds a word 

in cache during read operation main memory not involved 

in transfer but in case of write operation there are two 

commonly used procedures to update memory. 

 Write Through policy: Both cache and memory is 

updated during every write operation. 

 Write back policy: Only cache is updated and location 

is marked so that it can be copied latter into main 

memory.Hence it is faster than write through policy. 

b. Cache Coherence policy: Similar to memory update 

policy for updating copies data,a greedy and lazy cache 

coherence policy has been introduced. 

 Write update policy(a greedy policy): Whenever 

processor updates a cached data it immediately updates 

all other cached copies. 

 Write Invalidate policy (a lazy policy): The updated 

cache block is not sent immediately to other caches, 

instead simple invalidate command is sent to all other 

cached copies and to original version in shared 

memory. 

c. Interconnection Scheme: Hardware based protocols can 

be further classified based on the nature of interconnection 

network applied in the shared memory system. 

 Single bus Snoopy cache protocol: This scheme is 

typically used in single bus based shared memory 

system where invalid or update command are broadcast 

via the bus and each cache snoops the bus for the 

incoming consistency command. 

 Multistage Directory scheme: In this scheme a directory 

must be maintained for each block of shared memory to 

manage the actual location of blocks in the possible 

caches. 

 Multiple Bus Hierarchical Cache coherence protocol: in 

this protocol multiple bus network with the application 

of hierarchical cache coherence protocol that are 

generalized or extended version of single bus snoopy 

protocol. In which each parent keeps track of exactly its 

immediate children has a copy of block 

 

 



International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682 
Vol.5, No.3, march 2016                                                                           DOI:10.15693/ijaist.2016.v5.i3.29-38   
 

30 
 

1.2 Software Based Scheme:  

Software based approach represents a good and 

competitive compromised since they require nearly 

negligible hardware support and they can lead to the same 

small number of invalidation misses as hardware based 

protocol. All software based protocol relies on the 

computer assistance. The compiler analyses the program 

and classifies the variable into four classes 

a. Read only for any number of processes: Read only 

variables can be cached without restrictions 

b. Read only for any number of processes and read write for 

one process: variables can be cached by read wire process 

alone and the main memory must be kept always 

consistent by using write-through policy 

c. Read write for exactly one process: variable can be 

cached only for that process since only one process uses 

this variable. Variable can be cached and updated by 

write-back policy. 

d. Read write for any number of processes: variable must be 

marked as a non-cacheable that is must not be cached in 

software based schemes.  

Cache coherence is an important part of the proposed 

standard. Current mechanisms prove insufficient when the 

number of processors increases dramatically. This calls for a 

new approach to the cache consistency problem. The SCI 

working group is defining a scalable distributed directory 

scheme where processors sharing cache lines are linked 

together by pointers stored in the caches. 

 

1.3 Implementation Schemes 

 

The previous section describes the cache coherence 

problem and introduces the coherence protocols as the agents 

that solve the coherence problem. There are two main 

implementation schemes of cache coherence protocols, bus-

based protocols (snoopy) and directory-based protocols. In this 

section, we present the two dominant hardware schemes that 

are used to enforce the cache coherence property. 

 

1.3.1 Bus Based Protocol (Snooping) 

Shared memory systems that are based on a shared 

broadcast medium follow the Snooping approach; no parts of 

memory are assigned to any processor. Assuming a single level 

of private caches, a processor that requests to access a memory 

block, which does not, resides in its local cache, it sends a 

message to all the other caches and main memory. All the 

caches snoop the traffic on the interconnection network to 

identify a new message. If no cache has a copy of the requested 

block then the block is loaded from main memory. If, however, 

one or more caches maintain a valid copy, one of them sends 

the requested block back to the cache that requested it. 

Messages are used not only to facilitate data transferring. Every 

message is assigned a type, which has a specific meaning for 

the coherency protocol. Based on this type caches that receive 

such messages are becoming aware of the intention of the 

requesting processor. Having this knowledge, caches are able to 

follow the steps imposed by the coherency protocol. This 

category of coherency protocols adds a requirement to the 

interconnection network properties, which constitutes the basic 

property of the protocol. This requirement refers to the ability 

that must be offered to any cache to broadcast messages and 

also to snoop the bus activity. Otherwise, it is impossible for 

the distributed protocol to synchronize the requests of 

processors. In snooping protocols the bus act as the serialization 

point for coherence transactions. 

 

1.3.2 Directory Based Protocol 

The use of an arbitrary multi-stage interconnection network 

poses challenges to the implementation of cache-coherent 

shared memory. Although connecting the processing nodes on a 

scalable network topology, i.e. (Mesh, Hybercube), yields to 

potentially more bandwidth efficient system, it also takes away 

the inherent broadcast capabilities of a shared bus that can be 

exploited to implement broadcast-based coherence. Instead, 

such systems are based on tracking which processor cache 

contains a memory line, to send the number of necessary 

messages, and avoid broadcasts. Sharing information is kept in 

an auxiliary data structure called a directory, illustrated in 

Figure 1.1. Furthermore, directory information can be 

distributed to multiple directory engines to avoid the 

performance bottleneck of a single, monolithic directory. Each 

node or group of nodes is associated with a directory 

corresponding to the locations in that node's group local 

memory.  

 
Fig.1.1 Simple Directory Structure 



International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682 
Vol.5, No.3, march 2016                                                                           DOI:10.15693/ijaist.2016.v5.i3.29-38   
 

31 
 

As shown in Figure 1.1, an example of one node's group 

directory contents. The directory consists of a collection of 

directory entries, one for each memory block in the node's local 

memory. Because the processor caches interface to the system 

at a cache line granularity that is, each processor cache miss or 

write back transfers a single cache line of data between memory 

and the cache size of the memory block tracked by each 

directory entry is usually one cache line. In its simplest form, a 

directory entry contains two fields: a state indication and a 

presence bit vector. In invalidation-based protocols the state 

indication specifies whether the memory line associated with 

the directory entry is held shared (i.e., read-only) in one or 

more caches or whether it is held exclusive (i.e., with read/write 

permission) in a single processor's cache. The presence bit 

vector indicates which processors are caching the memory line; 

if the memory line is held exclusive, only one presence bit may 

be set.  

The directory entry depicted in Figure 1.1 shows a case in 

which the corresponding memory line is held shared, indicated 

symbolically by the “S” in the state field, and is present in the 

caches of processors 1, 2, 4, and 6, indicated by the presence bit 

vector. When a memory request arrives at a processing node, 

the controller of the node then retrieves the corresponding 

directory entry to determine what additional actions are 

required to service the request. For example, as shown in Figure 

1.2, if processor 3 requested exclusive access to the memory 

line, the memory line first must be removed, or invalidated, 

from all processor caches currently holding it. In a distributed 

system, the controller of the node must consult the presence bit 

vector to determine that explicit invalidation messages need to 

be sent to processors 1, 2, 4, and 6. In a bus-based system, these 

invalidations would be performed automatically when 

processor 3's exclusive request was issued on the bus. This is a 

simplified case is just one example of the operation of a 

distributed cache coherence protocol. In practice, these 

protocols are complex, especially because so many race 

conditions can occur as a result of the lack of a shared bus to 

serialize all processors' memory requests. 

 

1.4 Directory Organizations 

Directory-based cache coherence protocols have been used 

for long in shared memory multiprocessors. These protocols 

introduce directory memory overhead due to the need of 

keeping the sharing status of a memory block in a directory 

structure. In the past, this structure would provide an entry for 

every block of main memory and, because of its size, was kept 

in DRAM. The directory information represents memory 

overhead as it adds state information either for each cached or 

also for each non-cached memory block in the system, 

depending on the directory organization. However, this 

overhead could become very high depending on both the 

sharing code and the number of cores that comprise the 

multiprocessor system, and even be in large systems 

prohibitive. In this section, we study a directory organization 

for CMPs that addresses the problem discussed above. Then it 

reviews the main alternatives for storing the directory 

information and offers a proposal to optimize look-up time for 

the directory organization used in this work. 

Moreover, the straightforward way of tracking sharers of a 

block is by using a full-map sharing code where each bit 

represents a core in the system, which is set when that cache 

holds a copy of the block. The size of this directory structure 

scales with the number of cores (P) in the system. In particular, 

the order of its size is (P * M), where M is the number of 

memory entries and P is the number of cores in the system. For 

the purposes of this discussion on directory state organizations, 

we assume a single level of caches, since this is sufficient. 

Thus, the number of caches and the number of cores is assumed 

the same. Based on the memory is distributed among the nodes 

the two categories of directories schemes are the centralized 

and the distributed schemes, where the memory is distributed 

and multiple directories are responsible for a portion of the 

address space. 

As shown in Figure 1.2 the two alternatives for finding the 

source of the directory information for a block are known as 

flat directory schemes and hierarchical schemes. The taxonomy 

that is showed, also divides Flat schemes into two categories 

based on the way they use in order to locate the copies of the 

memory blocks. In the following sections we analyze the 

distributed schemes categories. 

 
Fig 1.2. Directory Schemes 

1.4.1 Flat Schemes 

Flat schemes are more popular than hierarchical, and they 

can be classified into two categories: memory-based schemes 

and cache-based schemes. Memory based schemes store the 



International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682 
Vol.5, No.3, march 2016                                                                           DOI:10.15693/ijaist.2016.v5.i3.29-38   
 

32 
 

directory information about all main memory blocks, or only 

cached copies, at the home node of each block. The 

conventional architecture of Figure 1.2 which uses the full-map 

sharing code, is memory based. 

Examples of memory based system are the Stanford 

FLASH/DASH and SGI Origin systems. In cache-based 

schemes (also known as chained directory schemes), such as 

the IEEE Standard Scalable Coherent Interface (SCI), the 

information about cached copies is not all contained at the 

home but is distributed among the copies themselves. The home 

node contains only a pointer to the first sharer in a distributed 

double linked-list organization with forward and backward 

pointers. The locations of the copies are therefore determined 

by traversing the list via network transactions. The most 

important advantage of cache-based directory schemes is their 

ability to significantly reduce directory memory overhead, since 

the number of forward and backward pointers is proportional to 

the number of cache entries, which is much smaller than the 

number of memory entries. Several improvements have been 

proposed for chained directory protocols and commercial 

multiprocessors have been designed according to these 

schemes, such as Sequent NUMA-Q, which has been designed 

for commercial workloads, and Convex Exemplar 

multiprocessors, destined to scientific computing. Nevertheless, 

these schemes increase the latency of coherence transactions as 

well as overload the coherence controllers and lead to complex 

protocols implementations. In addition, they need more cache 

states and extra bits for forward and backward pointers, which 

imply changing processor caches. These factors make more 

popular memory-based schemes than cache-based ones. The 

problem of the directory memory overhead in memory-based 

schemes is usually managed from two separate points of view: 

reducing directory width and reducing directory height. The 

width of the directory structure is given by the directory entries 

and it mainly depends on the number of bits used by the sharing 

code. The height of the directory structure is given by the 

number of entries that comprise the directory. In the following 

subsection we discuss the two alternatives that try to reduce the 

directory memory overhead. 

 

1.4.2 Hierarchical Schemes 

Hierarchical memory schemes treat the processing cores as 

the leaves of a logical tree, with main memory distributed along 

with the processing nodes. Every block is assigned to a home 

node (leaf) in which it is allocated, but this does not mean that 

the directory information is maintained or rooted there. The 

internal nodes of the tree are not processing cores and only hold 

directory information. Each such directory node keeps track of 

all memory blocks that are being cached or recorded by its sub-

trees and it uses a presence vector per block to tell which of its 

sub-trees have copies of the block and a bit to tell whether one 

of them has it dirty. It also records information about local 

memory blocks that are being cached by processing nodes 

outside its sub-tree. This information is used then to decide 

when requests originating within the sub-tree should be 

propagated further up the hierarchy. In general, the advantages 

of hierarchical schemes are tightly related to the amount of 

locality shown by memory accesses, as the delay is high if all 

the buses/levels that need to be traversed to serve a high 

percentage of the memory accesses. The main drawback of 

such schemes is the latency problem, because the number of 

network transactions sent up and down the hierarchy to satisfy a 

request tends to be larger than in a flat memory-based scheme. 

Even though these transactions may be more localized in the 

network, each one is a network transaction that also requires 

either looking up or modifying the directory at its 

(intermediate) destination node. This increased endpoint 

overhead at the nodes along the critical path tends to prevail 

any reduction in the total number of network hops traversed and 

hence network delay, especially given characteristics of modern 

networks. 

 

2. SCALABLE COHERENT INTERFACE 

(SCI) 

The SCI standard contains two levels of interface, a 

physical level and a logical level. The physical level specifies 

electrical, mechanical and thermal characteristics of connectors 

and cards that meet the standard. The logical level describes the 

address space, data transfer protocols, cache coherence 

mechanisms, synchronization primitives and error recovery. 

SCI support multiprocessing with cache coherence for the 

general distributed shared memory. In this paper we are dealing 

with the cache coherence. 

High-performance processors use local caches to reduce 

effective memory-access times. In a multiprocessor 

environment this leads to potential conflicts; several processors 

could be simultaneously observing and modifying local copies 

of shared data. Cache-coherence protocols define mechanisms 

that guarantee consistent data are locally cached and modified 

by multiple processors. The SCI cache-coherence protocol can 

be hardware based, thus reducing both the operating system 

complexity and the software effort to ensure consistency. Many 

cache-coherence protocols rely on the broadcasting of all 

transactions. This broadcasting allows use of eavesdropping 

and intervention techniques to achieve data consistency.  



International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682 
Vol.5, No.3, march 2016                                                                           DOI:10.15693/ijaist.2016.v5.i3.29-38   
 

33 
 

 

2.1 Distributed Directories 

SCI uses a distributed directory-based cache-coherence 

protocol. Each shared line of memory is associated with a 

distributed list of processors sharing that line. All nodes with 

cached copies participate in the update of this list. Every 

memory line that supports coherent caching has an associated 

directory entry that includes a pointer to the processor at the 

head of the list. Each processor cache-line tag includes pointers 

to the next and previous nodes in the sharing list for that cache 

line. Thus, all nodes with cached copies of the same memory 

line are linked together by these pointers. The resulting doubly 

linked list structure is shown in figure 1.3.  

 

 
Fig.1.3 Distributed sharing list Directory. 

 

Note that this illustrates the logical organization of the 

directory's sharing-list structure for one line, which may be 

different for each line that is cached. The processors are always 

shown on the top and the shared memory location is shown on 

the bottom. These logical illustrations should not be confused 

with the physical topology of a system; SCI expects that 

processors and memory will often be found on the same node. 

Coherence protocols can be selectively enabled based on bits in 

thee processor's virtual-address-translation tables. Depending 

on processor architecture and application requirements, pages 

could be coherently cached, non-coherently cached, or not 

cached at all. 

 

This distributed-list concept scales well. Even when the 

number of nodes in a list grows dramatically, the 

memorydirectoryand processor-cache-tag sizes remain 

unchanged.The list pointer values are the node addresses of the 

processors (caches). When a node accesses memory to get a 

copyof coherently shared data, memory saves the requesting 

node's address. If there are currently no cached copies, 

therequesting node becomes the head of a new list. If 

othernodes have cached copies of the data, the pointer to the 

head of the sharing list is returned from memory. Therequesting 

node inserts itself at the head of the list and gets its data from 

the previous head.SCI supports both weak and strong sequential 

consistency, as determined by the processorarchitecture. A 

weakly ordered write instruction can be executed before the 

sharing-list purge completes, while astrongly ordered write 

must wait for purge completion. 

2.2 SCI Node Model 

An SCI node needs to be able to transmit packets 

while concurrently accepting other packets addressed to itself 

and passing packets addressed to other nodes. Because an input 

packet might arrive while the node is transmitting an internally 

generated packet, FIFO storage is provided to hold the symbols 

received while the packet is being sent. Since a node transmits 

only when its bypass FIFO is empty, the minimum bypass 

FIFO size is determined by the longest packet that the node 

originates. Idle symbols received between packets provide an 

opportunity to empty the bypass FIFO in preparation for the 

next transmission. Input and output FIFOs are needed in order 

to match node processing rates to the higher link-transfer rate. 

Since there is no facility for delaying the transmissions of 

symbols within a packet, each node ensures that all symbols 

within one packet are available for transmission at full link 

speed. Similarly the node is able to receive a packet at full 

speed. Since node application logic is not expected to match the 

SCI link speeds, FIFO storage is needed for both transmit and 

receive functions, as illustrated in figure 1.4. 

 

Fig.1.4  SCI node Model 

3. LITERATURE SURVEY 

 

There are different types of directory based cache 

coherence protocols are available to minimize the cache 

coherence problem, but each protocol has its drawbacks in the 

form of memory overhead. Thus proposed four directory-based 

protocols, but for memory overhead calculations they just used 



International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682 
Vol.5, No.3, march 2016                                                                           DOI:10.15693/ijaist.2016.v5.i3.29-38   
 

34 
 

three of them (full map, chained, limited directory) and after 

this calculation they compare it on the basis of memory 

overhead to find out the most suitable protocol according to the 

size of shared memory system. Finally came to the conclusion 

that as the no of processors are varies the overhead also 

changes, and for the same no of processors different protocols 

has different memory overhead requirements. Thus by 

comparing their overhead we can easily find out which protocol 

is suitable for a shared memory system. They have made the 

following comparison. 

 

Number of Processors 

Scheme P=32 P=64 P=128 P=156 

Full Map 

Directory 
1.027  2.024 4.016 8.0002 

Limited 

Directory 
0.68556  0.80958 0.93409 1.0586 

Chained  

Directory 
0.2188  0.25512 0.28137 0.31262 

Table 1: The memory overhead for various schemes for given 

number of processors 

These protocols have their advantages and disadvantages in 

the form of memory overhead and cache miss (read/write). 

Thus on the basis of these advantages and drawbacks we must 

chose the appropriate protocol for a particular network. After 

analysis and comparing the memory overhead for various 

schemes show how well these schemes scale, as the no of 

processors grows full memory directory scheme has a sharp 

increase in a memory overhead hence it is poorly scalable. 

Limited and chained protocols have similar values. Limited 

directory has the disadvantages of, only small set of processor 

can share a data block so it is not preferable. Chained directory 

have lower memory overhead and it scales gracefully with 

additional processors. Chained directory can be candidate 

choice in term of lower memory utilization. 

The parallelism can be improved if more than one 

operation is executed by different processor at the same time. 

So in this case replication of data is required and more than one 

write request is to be done. But multiple write-requests create 

some inconsistent result when the location is same for all write. 

The framework finds the address of updates and propagates it to 

all nodes. The coherency protocol is required to maintain 

memory consistency for ensuring the serialization of write 

operation and that any subsequent reads or writes access the 

update data. The updates are propagated by the remote site. 

Now it is upto the coherency protocol to take these update and 

incorporate the update into the local copies. 

 

4. PROPOSED WORK 

This proposed coherence model supports the sharing of 

fresh or dirty data and provides special read and write 

optimizations. This is a useful model that efficiently supports 

the sharing of read-only instructions/data as well as read/write 

data. This model better illustrates the complexity of a typical 

implementation. Each of the sharing-list states is defined by the 

state of the memory, MState, and the states of the entries in the 

sharing list, CState. In normal operation, the memory state is 

either HOME, FRESH, GONE or WASH. The sharing-list state 

names have two components.  

The first component specifies the location of the entry in 

amultiple-entry sharing list (HEAD, MID, or TAIL), or 

identifies the only entry in the sharing list (ONLY). The 

secondcomponent specifies the entry's caching properties 

(FRESH, CLEAN, DIRTY, VALIDetc.). Since the head 

normally administers the return of dirty data to memory, it 

differentiates between FRESH(must be the same as memory) 

and the other(can modify without informing memory) states. 

 

 

SrNo. Name Description 

1 HOME No sharing list 

2 FRESH Sharing-list copy is the same as 

memory 

3 GONE Sharing-list copy may be different 

from memory 

4 WASH Transitional state (GONE to FRESH) 

Table 2: Stable sharing list 

 

Fresh copies. The fresh memory state indicates that all shared 

copies are read-only; the data can be returned from memory 

when a processor is attaching to the head of the previous 

sharing list. 

 

Step 1: Read-only fetch 

1.  Memory is in the HOME state and all caches are 

INVALID.  

2. When fetching a read-only copy, the sharing-

listcreation begins at the cache, where an entry is 



International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682 
Vol.5, No.3, march 2016                                                                           DOI:10.15693/ijaist.2016.v5.i3.29-38   
 

35 
 

changed from the INVALID to the PENDING state, 

and anmread64. 

3. CACHE_FRESH transaction is generated to obtain a 

coherently cached copy.  

4. The read updates (1) the memory-directory state (from 

HOME to FRESH), and the new entry state is changed 

accordingly (from PENDING to ONLY_FRESH), as 

illustrated in figure 2-1. 

 
Leaving the memory in a FRESH state minimizes the 

memory-access latencies for subsequent reads, since FRESH 

data can be provided by memory before the new sharing-list 

head attaches to the existing sharing list.For subsequent 

accesses, the memory state is FRESH and the head of the 

sharing list has the unmodified data. Whenread-only data are 

accessed (1), fresh data are returned from memory and the new 

requester then attaches (2) to the oldsharing-list head. These 

steps are illustrated in figure 2-2 for an 

mread64.CACHE_FRESH request when memory isin the 

FRESH state. 

 
When the memory state is GONE, the head of the sharing list 

has the (possibly modified) data. The fresh data that isrequested 

(1) cannot be returned from memory, but the dirty sharing-list 

copy is returned (2) when the new requesteris attached to the 

old sharing-list head. These steps are illustrated in figure 2-3, 

for an mread64.CACHE_FRESH request when memory is in 

the GONE state. 

 

 

The final state of the old sharing-list head is a function of the 

old head's initial state. The state of the new sharing-list head is 

HEAD_DIRTY. The states of the other mid and tail entries are 

unaffected by sharing-list additions. 

 

Step 2: Read-write fetch 

If a later write is expected, a data-cache miss may be 

designed to fetch a modifiable (but not yet modified) copy. In 

this case, the read64.CACHE_CLEAN transaction is used (1) to 

fetch modifiable (but not immediately modified) data from 

memory. A FRESH memory state returns its data before the 

memory-tag state is thanked to the GONE state. After 

prepending (2) to the old sharing list, the sharing list is left in 

the HEAD_DIRTY state, as illustrated in figure 2-5.  

 

 
 

The read64.CACHE_CLEAN transaction could access (1) a 

GONE memory state. In this case, the memory state is 

unchanged and no data are returned. The dirty data are 

eventually returned (2) when attaching to the old sharing list, as 

illustrated in figure 2-5. 

 



International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682 
Vol.5, No.3, march 2016                                                                           DOI:10.15693/ijaist.2016.v5.i3.29-38   
 

36 
 

 
Step 3: Data modifications 

 

Data in the HEAD_DIRTY state may be modified 

immediately, before the remaining sharing-list entries are 

invalidated. After data are modified, the head of a modifiable 

sharing list (HEAD_DIRTY) purges the remaining sharing-list 

entries. For the typical set of options, the initial transaction to 

the second sharing-list entry purges (1) that entry from the 

sharing list and returns its forward pointer. The forward pointer 

is used to purge (2) the next (formerly the third) sharing-list 

entry. The process continues until the tail entry is reached, as 

illustrated in figure 2-6.  

 

 
Concurrent deletions may temporarily corrupt the backId 

pointers in one or more of the sharing-list entries. Since the 

head-initiated purge uses only the forwId pointers, the purges 

and deletions can safely be performed at the same time.The 

purging state (HD_INVAL_OD) is similar to the PENDING 

state, in that new sharing-list additions are delayedwhile the 

purges are being performed. Note that purge latencies increase 

linearly with the number of sharing readers.Since purge lists are 

often short, the linear latencies may be acceptable in many 

systems. An ONLY_FRESH entry is changed to the 

ONLY_DIRTY state before the data are modified. This 

requires an additional memory-access transaction (1) 

mread00.LIST_TO_GONE, which changes the memory-

directory state from FRESH to GONE, as illustrated in figure 2-

7. 

 
 

 
Similarly, a HEAD_FRESH entry is changed to an 

intermediate modifiable (HEAD_DIRTY) state before the data 

are modified and the other sharing-list entries are invalidated. 

The memory-access transaction(1)mread00.LIST_TO_GONE 

is used to change from the HEAD_FRESH to HEAD_DIRTY 

state, the data modifications are performed, and the cache-line 

state is changed to an intermediate HV_INVAL_OD state. The 

other copies are then invalidated (2), as illustrated in figure 2-8. 



International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682 
Vol.5, No.3, march 2016                                                                           DOI:10.15693/ijaist.2016.v5.i3.29-38   
 

37 
 

The mread00.LIST_TO_GONE transaction's update of 

memory state is conditional; if the memory directory points to a 

newly queued cache entry the update is nullified. This 

nullification is detected by the sharing-list head, which then 

deletes itself from the sharing list and re-attaches in a 

modifiable (ONLY_DIRTY or HEAD_DIRTY) state. 

 

Step 4: Mid and head deletions 

Entries can also be deleted from the list by their own 

controller when they are needed to cache data at other addresses 

(cache-line rollout). The sharing-list deletions involve the 

update of the backIdin the next (closer to the tail) entry, and the 

forwId pointer in the previous (closer to memory) entry. Before 

the deletion begins the entry is converted into a locked state. A 

MID_VALID entry is converted into the locked 

MV_FORW_MV state and transactions (1 and 2) to the 

adjacent sharing-list entries are generated, as illustrated in 

figure 2-9. 

 
Head entries can also delete themselves from the list, e.g., when 

they are needed to cache data at other addresses(cache-line 

rollout). The sharing-list deletions involve (1) the update of the 

backId in the next (closer to the tail) entry, and (2) the forwId 

pointer in the memory directory, as illustrated in figure 2-10. 

 

 

 
Recovery from detected transmission errors is usually 

possible when a single write transaction is used to collapse an 

ONLY_DIRTY sharing list, but cannot be guaranteed. Multiple 

transmission errors during a particular set of 

sharinglisttransitions can leave the sharing-list in an 

uncorrupted (the data won't be incorrectly recovered) but 

unrecoverable (the correct data can't be recovered) 

state.Therefore the fault-tolerance of the SCI system may 

optionally be improved by using two transactions: the 

firsttransaction returns (1) the dirty data and the second 

transaction collapses (2) the sharing list. These two steps 

areillustrated in figure 2-11. 

 

 
 

5. CONCLUSION AND FUTURE SCOPE 

 

Protocols for cache coherence are critical to multiprocessor 

systems. In general, the directory based protocol is more used 



International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682 
Vol.5, No.3, march 2016                                                                           DOI:10.15693/ijaist.2016.v5.i3.29-38   
 

38 
 

for larger systems to increase their performance; while 

snooping protocol is used for smaller systems. In this paper we 

proposed the coherency modeler based upon IEEE standard for 

Scalable Cache Coherence (SCI) and it provides design 

direction for multiprocessor scenario. Also we have analyzed 

the various design challenges of the directory based protocol 

and proposed a state machine based architecture for coherent 

modeler and using this design we are planning to verify it 

experimentally for its performance and validity. 

 

The SCI standard intends to support several compatible 

future extensions. This allows implementations to quickly use 

the existing specification, while providing opportunities to 

expand the SCI capabilities when more experience is available. 

Although the future extensions are beyond the scope of the SCI 

standard, a short overview is intended to provide the reader 

with insights on how this standard may evolve in the future. 

The SCI standard supports the concept of delaying distribution 

of shared data, by queuing additional requesters until a cache 

line has been released by its current owner. A future extension 

to the SCI coherence protocols could implement a more-

transparent lock bit, by providing an out of band lock bit for 

every 64-byte cache line. 

 

6. REFERENCES 

 
[1]. Juan Gomez-Luna Herruzo and Jose Ignacio Benavides, MESI 

Cache CoherenceSimulator for Teaching Purposes. CLEI 

ELECTRONIC journal pp1-7, 2009. 

[2]. John L. Hennessy, David A. Patterson, David Goldberg, 

Computer Architecture: Aquantitative Approach, fourth 

edition, P579. 

[3]. Yong J. Jang and Won W.R. Evaluation of Cache Coherence 

Protocols onMulti-CoreSystems with Linear Workloads, 

ISECS International Colloquium on 

Computing,Communication, Control, and Management, pp 1-

4, 2009. 

[4]. Aanjhan Ranganathan, Experimental Analysis ofSnoop Filters 

for MPSoC EmbeddedSystems, Ecole Polytechnique Federale 

de Lausanne, pp10. 

[5]. Richard Simoni, Implementing a Directory-Based Cache 

Consistency Protocol, DARPA,pp 1-2, 1990 . 

[6]. M. Heinrich, J. Hennessy, and A. Gupta, The Performance 

and Scalability of DistributedShared Memory Cache 

Coherence Protocols, IEEE Transactions on Computers, pp 1-

7, 1999. 

[7]. Wong Pak Shing, An effective model of cache coherence 

protocol with VHDL simulation. Object oriented computing 

pp16-18, 2008. 

[8]. Blas Cuesta, Alberto Ros, Marı´a E. Go´mez, 

AntonioRobles, and Jose´ Duato, “Increasing the 

Effectivenessof Directory Caches by Avoiding the 

Tracking ofNoncoherent Memory Blocks,” IEEE 

Transaction onComputers, vol.62, no.3, March 2013. 

[9]. Huang Yongqin Yuan Aidong ; Li Jun ; HuXiangdong, “A 

Novel Directory-Based Non-busy,Non-blocking cache 

coherence,” IFCSTA '09.International Forum on Computer 

Science-Technology and Applications, 2009, vol.1, 25-

27Dec2009, pp.374-379 

[10]. G. Keramidas and S. Kaxiras, “SARC Coherence: 

ScalingDirectory Cache Coherence in Performance and 

Power(preprint),” IEEE Micro, 2010. 

 

 

BIOGRAPHIES 

 

 

ManojJadhav received the B.E. degree in 

Computer Science and Engineering from 

Walchand Institute of Technology, 

Solapur, Solapur University, Solapur India 

in 2012. He is pursuing the M.Tech. in 

Computer Science and Engineering from 

VIT University, Vellore, India. His research interest includes 

Operating Systems and design, Big Data Analysis and cloud 

Computing. 
 

Mr G.GOPICHAND is currently working 
as an Assistant Professor in the School of 
Computer Science and Engineering 

at VIT University, 
Vellore,Tamilnadu,India.He received his 
B.Tech degree in Computer Science and 
Engineering from JNTU Hyderabad in the 

year 2004 and also received his MTech. degree in Computer 
Science and Engineering  from JNTU Anantapur, He is having 
more than 10 years of teaching experience and his area of 
interest include Computer Networks,Network 
Security,Wireless Networks, Adhoc Networks,Distributed 
Computing. 


