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Abstract— Neural networks have been used successfully to 

a wide range of areas in different forms. In water 

resources management aspect too, neural networks have 

been applied extensively. Neural networks are used mainly 

in two different ways in solving static and dynamic 

problems. This paper investigates the ability of both static 

and dynamic ANN models in six different forms for 

modeling daily mean discharge of Dholai(Rukni) river, 

Assam, India. Results indicated that Gamma memory 

neural network(GMNN) model outperformed other ANN 

models while Tanh transfer function and Levenberg-

Marquardt learning rule is employed. GMNN model also 

performed best in simulating major flood events of the test 

data series dominating other chosen ANN models. Hence, 

GMNN model can be used as a better alternative technique 

for simulating and prediction of stream flows. 

 

Index terms - ANN, stream flow, simulation, static, 

dynamic.    

I. INTRODUCTION 

The severity of major floods contributes significantly toward 

the investigation of different flow modeling techniques and 

hence increases their prediction accuracy. Flood modeling 

follows largely two major modeling approaches: conceptual 

(phenomenological) modeling, which retains some of the 

physical laws in their mathematical formulation, and black-

box modeling, which relies heavily on an input-output 

description of the conceptual models. The large amount of 

data required for the conceptual models, along with the costs 

of collecting the data made the black-box models more 

attractive to hydrologists. Black-box models include linear and 

non-linear statistical method and artificial neural networks. 

Artificial neural networks proved to be better than other linear 

and nonlinear models due to its ability to capture the temporal 

features of time series problem. Adoption of memory based 

neural networks such as gamma, time delay and laguarre 

memory made it more popular than the other static ANN 

models. In fact, these memory based neural networks have 

been applied successfully in various fields [1-6]. The intent 

here is to focus on the contribution of ANNs in water 

resources management aspect. Moreover, improvement in the 

ability of ANN modeling techniques in flood prediction could 

help those affected by the flood. The present study aims to 

analyze the performances of six different static and dynamic 

neural network models in simulating daily mean discharge of 

Dholai(Rukni) river located in Assam, India. Dholai river is 

tributary of Barak river basin. The six  

II. METHODOLOGY 

Six ANN models are chosen in the present study which 

includes both static and dynamic ANN models. Three different 

models are created from TLRN using gamma, TDNN and 

laguarre memory. ANN models are discussed as follows: 

a. Multilayer perceptrin(MLP) 

Multilayer perceptrons (MLPs) are layered feed-forward 

networks typically trained with static backpropagation. This 

network has found countless applications requiring static 

pattern classification. The article by [7] is probably one of the 

best references for the computational capabilities of MLPs. 

Generally speaking, for static pattern classification, 

the MLP with two hidden layers is a universal pattern 

classifier. In other words, the discriminant functions can take 

any shape, as required by the input data clusters. Moreover, 

when the weights are properly normalized and the output 

classes are normalized to 0/1, the MLP achieves the 

performance of the maximum a posteriori receiver, which is 

optimal from a classification point of view [8]. In terms of 

mapping abilities, the MLP is believed to be capable of 

approximating arbitrary functions. This has been important in 

the study of nonlinear dynamics [9], and other function 

mapping problems. MLPs are normally trained with the back-

propagation algorithm [10]. In fact the renewed interest in 

ANNs was in part triggered by the existence of back-

propagation. The LMS learning algorithm proposed by 

Widrow can't be extended to hidden PEs, since we do not 

know the desired signal there. The back-propagation rule 

propagates the errors through the network and allows 

adaptation of the hidden PEs. Two important characteristics of 

the multilayer perceptron are: its nonlinear processing 

elements (PEs) which have a nonlinearity that must be smooth 

(the logistic function and the hyperbolic tangent are the most 

widely used); and their massive interconnectivity (i.e. any 
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element of a given layer feeds all the elements of the next 

layer). The multilayer perceptron is trained with error 

correction learning, which means that the desired response for 

the system must be known. In pattern recognition this is 

normally the case, since we have our input data labeled, i.e. 

we know which data belongs to which experiment. 

Error correction learning works in the following way: From 

the system response at PE 𝑖 at iteration 𝑛, yi(n), and the 

desired response di(n) for a given input pattern an 

instantaneous error ei(n) is defined by: 

ei n = di n − yi(n)                                      1 

Using the theory of gradient descent learning, each weight in 

the network can be adapted by correcting the present value 

of the weight with a term that is proportional to the present 

input and error at the weight, i.e. 

𝑤𝑖𝑗  𝑛 + 1 = 𝑤𝑖𝑗  𝑛 + 𝜂𝛿𝑖 𝑛 𝑥𝑗  𝑛                  2 

The local error 𝛿𝑖 𝑛  can be directly computed from ei n  at 

the output PE or can be computed as a weighted sum of 

errors at the internal PEs. The constant η is called the step 

size. This procedure is called the back-propagation 

algorithm. 

Their main advantages are that they are easy to use, and that 

they can approximate any input/output map. The key 

disadvantages are that they train slowly, and require lots of 

training data (typically three times more training samples than 

network weights). 

b.  Generalized Feed-Forward Network(GFN) 

Generalized feed-forward networks (GFN) are a generalization 

of the MLP such that connections can jump over one or more 

layers. Like MLP, the numbers of layers are specified prior to 

further operation, and the MLP model is constructed, in which 

each layer feeds forward to all subsequent layers. In theory, a 

MLP can solve any problem that a generalized feed-forward 

network can solve. In practice, however, generalized feed-

forward networks often solve the problem much more 

efficiently. A classic example of this is the two spiral problem. 

Without describing the problem, it suffices to say that a 

standard MLP requires hundreds of times more training 

epochs than the generalized feed-forward network containing 

the same number of processing elements. The advantage of the 

GFN is in the ability to project activities forward by bypassing 

layers. The result is that the training of the layers closer to the 

input becomes much more efficient. The same disadvantages 

of the MLP apply to the GFN. 

c. Jordon-Elman Network (JEN) 

Jordan and Elman networks extend the multilayer perceptron 

with context units, which are processing elements (PEs) that 

remember past activity. Context units provide the network 

with the ability to extract temporal information from the data. 

JEN provides four basic topologies, differing by the layers that 

feed the context units. The first configuration feeds the context 

units with the input samples, providing an integrated past of 

the input (memory traces). A second configuration creates 

memory traces from the first hidden layer (as proposed by 

Elman). A third possibility is to use the past of the last hidden 

layer activations as input to the context units. The final choice 

is to use the past of the output layer to create the memory 

traces, as proposed by Jordan. 

The context unit remembers the past of its inputs using what 

has been called a recency gradient, i.e., the unit forgets the 

past with an exponential decay. This means that events that 

just happened are stronger than the ones that have occurred 

further in the past. The context unit controls the forgetting 

factor through the Time constant. Useful values are between 0 

and 1. A value of 1 is useless in the sense that all of the past is 

factored in. On the other extreme, a value of zero means that 

only the present time is factored in (i.e., there is no self-

recurrent connection). The closer the value is to 1, the longer 

the memory depth and the slower the forgetting factor. 

Context units are required when learning patterns over time 

(i.e., when the past value of the network influences the present 

processing). In the Elman network, the outputs of the hidden 

PEs from the previous time step are copied to the context units 

(Figure 2). In the Jordan network, the output of the network is 

copied to the context units. In addition, the context units are 

locally recurrent (i.e., they feedback onto themselves). The 

local recurrence decreases the values by a multiplicative 

constant t (time constant) as they are fed back. This constant 

determines the memory depth (i.e., how long a given value fed 

to the context unit will be "remembered"). 

One can treat the context units as input units, just as if they 

were obtained from an external source such as a file. Since the 

recurrent connections within the context units are fixed, static 

back-propagation is used to train these networks. Note that if 

the recurrent connections were adaptive, then back-

propagation through time would be required. The JEN models 

are advantageous over the previous neural models that can 

only solve static problems. Temporal problems are ones where 

the previous value of the input affects the current output. The 

Jordan and Elman networks can solve temporal problems by 

processing information over time using recurrent connections. 

But, both of these nets are constrained in their ability to handle 

time. The time constant of the Jordan network is fixed and 

often difficult to set optimally for a given problem. Moreover, 

the past is always exponentially attenuated, which may not be 

very representative of the problem. 

http://www.neurosolutions.com/neurosolutions/help/GradientDescent.html
mk:@MSITStore:C:\Program%20Files%20(x86)\NeuroSolutions%205\Wizards\NeuralBuilder\NeuralBuilder.chm::/NeuralWizard/Multilayer_Perceptrons.htm#MLP_Disadvantages_MidTopic
mk:@MSITStore:C:\Program%20Files%20(x86)\NeuroSolutions%205\Wizards\NeuralBuilder\NeuralBuilder.chm::/NeuralWizard/Multilayer_Perceptrons.htm#MLP_Disadvantages_MidTopic
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Fig. 2.  Block diagrams of Jordan and Elman neural models 

d. Time Lagged Recurrent Network (TLRN) 

TLRNs are MLPs extended with short term memory structures 

that have local recurrent connections. The TLRN is a very 

appropriate model for processing temporal (time-varying) 

information. Examples of temporal problems include time 

series prediction, system identification and temporal pattern 

recognition. The training algorithm used with TLRNs is more 

advanced than standard back-propagation. 

There are three memory structures to choose from namely, 

TDNN; Gamma; and Laguarre memories. The TDNN memory 

structure is simply a cascade of ideal delays (a delay of one 

sample). The gamma memory is a cascade of leaky 

integrators. The Laguerre memory is slightly more 

sophisticated than the gamma memory in that it orthogonalizes 

the memory space. This is useful when working with large 

memory kernels. 

The focused topology only includes the memory kernels 

connected to the input layer. This way, only the past of the 

input is remembered. If the focused switch is not set, the 

hidden layers‟ PEs will also be equipped with memory 

kernels. The depth in Samples parameter (𝐷) is used to 

compute the number of taps (𝑇) contained within the memory 

structure(s) of the network. The number of taps within the 

input memory layer is dependent on the type of memory 

structure used. For the TDNN memory, the number of input 

taps 𝑇 is equal to the depth 𝐷. The formula for the other two 

memory types is 𝑇 =  2𝐷/3. The number of taps for the 

memory structures at hidden layer 𝑛 is computed (for all 

memory types) by the formula 𝑇𝑛 =  𝑇/2 ∗ 𝑛. This is only 

used as a starting point for the memory depth, since the depth 

will be adapted by the network. 

The main advantages of TLRNs are the smaller network size 

required to learn temporal problems when compared to MLPs; 

their low sensitivity to noise; an adaptive memory depth for 

best duration to represent the input signal‟s past. TLRNs have 

some disadvantages too. The recurrent adaptation of the 

weights is nonlinear, so the training can get caught in local 

minima. Another disadvantage is that straight back-

propagation cannot be used for training. The back-propagation 

through time (BPTT) algorithm is quite complex and requires 

a lot of memory.  

Three different models were developed from TLRNs using 

memories such as gamma memory neural network; Time delay 

neural network (TDNN) and Laguarre memory neural network 

(LMNN). Details of these models are available in [1, 2, 11]. 

Figure 3-Figure 5 present block diagram of these three TLRN 

models. 

Fig. 3.  Block diagrams of TLRN 

 

Fig. 4.  Block diagrams of GMNN 

 

Fig.5. Block diagrams of LMNN 

III. RESULTS AND DISCUSIION 

Six different neural network models are developed using 

NeuroSolution-5 software namely, Multilayer perceptron 

(MLP); Generalized feed-forward network (GFN); Jordon-

Elman network (JEN); Gamma memory neural network 

(GMNN), Time delay neural network (TDNN); and Laguarre 

memory neural network (LMNN). These models are trained 

and tested several times with various sets of network 
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parameter such as transfer functions; learning rules; sample 

depth; hidden layers; and processing elements with daily 

observed precipitation data as input and daily observed 

discharge as output to the networks. The daily mean 

precipitation and discharge data are the data of Dholai(Rukni) 

river basin. The training and validation data considered here 

covers a period of 5 (2000-2005) years, out of which first 60% 

data are considered for training, next 15% data are considered 

for cross-validation and remaining 25% data are considered 

for testing the models. Upon adjustment of different 

parameters of each network structure during the calibration, 

the best performing network structures are achieved with Tanh 

transfer function and Levenberg-Marquardt learning rule for 

all the neural network models. The model performances are 

measured in terms of training min MSE; CV min MSE; testing 

MSE; NMSE; MAE; Min Abs Error; Max Abs Error; and r 

respectively. The training and testing results for all the ANN 

models are shown in Table 1. The results indicated that 

GMNN model dominated other models followed by JEN 

model. The minimum mean squared errors for training, cross-

validation and testing results are 0.018, 0.011 and 551.71 

respectively. Test results also indicated that GMNN model 

outperformed in other parameters such NMSE; MAE; Min 

Abs Error; Max Abs Error; RMSE and r respectively. A 

hydrograph of observed and best models discharge output is 

generated for the test series for comparing the performance of 

the best model (GMNN) with respect to the observed 

discharge (Figure 6).  

Table 1. Test results of different ANN models 

 

 

Fig. 6. Observed vs GMNN model output of test series.  

To assess the accuracy of the ANN models, the model output 

data are analyzed in simulating major events of test series. The 

severe events of test data series are selected as most severe 

day, mean of five severe events and mean of ten severe events 

respectively. These flood events are analyzed in terms of 

percentage error with respect to the observed events. From the 

analysis, it is found that the minimum percentage error is 

achieved by GMNN model dominating other models in all the 

cases with minimum error as 0.57%, 13.17% and 14.42 for 

most severe day, mean of five severe events and mean of ten 

severe events respectively. The analysis results are shown in 

table 2. Figure 7- figure 9 are presented to show the variations 

in the actual mean values of the selected events of all the 

models with respect to the observed values. GMNN model 

simulated the daily mean observed discharge better than other 

models. Overall, GMNN model proved to be an effective tool 

in river flow modeling. 

Table 2. Major events analysis results. 

 

 

Fig. 7. Model wise simulation of most severe event.  

 

Fig. 8. Model wise simulation of mean of five severe events.  
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Fig. 9. Model wise simulation of ten most severe events.  

 

IV. CONCLUSION AND FUTURE WORK 

The aim of this paper is to analyze the performance of six 

different ANN models in simulating daily river discharge of 

Dholai(Rukni) river. The ANN models include both static and 

dynamic models. Important features of all the selected neural 

network modeling techniques and basic concepts of these were 

introduced. We have compared the simulation ability of all the 

ANN models with the observed mean daily data for test data 

series. Dynamic models such as GMNN model outperformed 

static and other dynamic models. The simulating ability of 

models are accessed in terms of training min MSE; CV min 

MSE; testing MSE; NMSE; MAE; Min Abs Error; Max Abs 

Error; RMSE and r respectively. The model performances are 

also analyzed using model output data in simulating major 

events of test series. The severe events of test data series are 

selected as most severe day, mean of five severe events and 

mean of ten severe events respectively. From the analysis, it is 

found that the GMNN model dominated other models in all 

the cases.  

The area of neural networks is very diverse and opportunities 

for future research exist in many aspects.. Overall, GMNN 

model proved to be an efficient tool among the other chosen 

ANN models and information derived from the present study 

would be useful in planning, management and operation of the 

selected river and its main river. 
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